Find the standard form of the equation of the hyperbola. [a]

CENTER =
$$(2, \frac{-5+3}{2}) = (2, -1)$$
 (2)
 $a = \frac{3-5}{2}$ or $3-1=4$ (1)

$$\frac{(y+1)^{2}}{16} - \frac{(x-2)^{2}}{b^{2}} = 1$$

$$\frac{(y+1)^{2}}{16} - \frac{(1-2)^{2}}{b^{2}} = 1$$

$$4 - \frac{9}{b^{2}} = 1$$

$$\frac{4}{16} - \frac{9}{16} = 1$$

$$\frac{3}{16} = \frac{3}{16}$$

$$\frac{4}{6} = 3$$

$$\frac{6^{2} = 3}{6^{2} = 3}$$

$$\frac{(y+1)^{2}}{16} = (x-2)^{2} = 1$$

$$\frac{3}{12} = 1$$

Find the slope-point form of the equation of the asymptotes. [b]

$$5Lope = \pm \frac{16}{13} = \pm \frac{413}{3}$$

$$y+1 = \pm \frac{4\sqrt{3}}{3}(x-2)$$
 $(x-2)$

Fill in the blanks.

[a]

The shape of the graph of $9x^2 + 9x - 11y + 13 = 0$ is a/an PARABOLA

SCORE: ____/3 PTS

The shape of the graph of $7x^2 - 6x + 5y^2 + 8y - 10 = 0$ is a/an [6]

Fill in the blanks using the graph on the right.

- The polar co-ordinates $(3, -\frac{2\pi}{3})$ refers to point \square . [a]
- The polar co-ordinates $(-3, \frac{7\pi}{6})$ refers to point [b]
- The polar co-ordinates $(-3, \underline{6})$ refers to point D. [c]

SCORE: _____ / 4 PTS

$$r^{2} = 2 \operatorname{sm} \Theta \cos \Theta (2)$$

$$r^{2} r^{2} = 2 (\operatorname{rsm} \Theta) (\operatorname{rcos} \Theta) (2)$$

$$(x+y^{2})^{2} = 2 \times y$$

$$O$$

Convert the rectangular coordinates $(-6, -2\sqrt{3})$ into polar coordinates.

SCORE: ____/3 PTS

Write your final answer in proper notation.

$$r^{2} = 36 + 12 = 48 \rightarrow r = 4\sqrt{3}$$
 (1)
 $\cos \theta = -\frac{6}{4\sqrt{3}} = -\frac{\sqrt{3}}{2}$ $\theta = 7\pi \text{ or } -5\pi$ (4 $\sqrt{3}$, $\frac{7\pi}{6}$) or (4 $\sqrt{3}$, $-\frac{5\pi}{6}$)
 $\sin \theta = -2\sqrt{3}' = -\frac{1}{2}$ $\theta = 7\pi \text{ or } -5\pi$ (2) FOR PROPER FORMAT
 $\sin \theta = -2\sqrt{3}' = -\frac{1}{2}$ $\cos \theta = -\frac{1}{2}$

ARBITHESES + COMMA)

Test the polar equation $r = 1 + 2\sin\theta$ for symmetry with respect to the pole.

SCORE: / 6 PTS

State your conclusion clearly.

$$(-r,\theta)$$

$$-r=1+2sm\theta, \qquad r=1+2sm(\pi+\theta). \qquad r=1+2[sm\pi\omega s\theta+\cos\pi sm\theta]$$

$$NO CONCLUSION \qquad r=1-2sm\theta, \qquad r=1-2sm\theta, \qquad r=1-2sm\theta. \qquad r=1-2sm\theta.$$

CONCLUSION (

Convert the rectangular equation 5x - 4y + 3 = 0 into polar form.

SCORE: ____/5 PTS

Remember to solve for r.

5rcos0-4rsm0+3=0,2 r(5cos0-4sm0)=-3,2 $T = \frac{-3}{5\cos\theta - 4\sin\theta}, \text{ or } \frac{3}{4\sin\theta - 5\cos\theta}$